Using Experts Among Users for Novel Movie Recommendations
نویسندگان
چکیده
The introduction of recommender systems to existing online services is now practically inevitable, with the increasing number of items and users on online services. Popular recommender systems have successfully implemented satisfactory systems, which are usually based on collaborative filtering. However, collaborative filtering-based recommenders suffer from well-known problems, such as popularity bias, and the cold-start problem. In this paper, we propose an innovative collaborative-filtering based recommender system, which uses the concepts of Experts and Novices to create finegrained recommendations that focus on being novel, while being kept relevant. Experts and Novices are defined using pre-made clusters of similar items, and the distribution of users’ ratings among these clusters. Thus, in order to generate recommendations, the experts are found dynamically depending on the seed items of the novice. The proposed recommender system was built using the MovieLens 1 M dataset, and evaluated with novelty metrics. Results show that the proposed system outperforms matrix factorization methods according to discovery-based novelty metrics, and can be a solution to popularity bias and the cold-start problem, while still retaining collaborative filtering. Category: Embedded computing
منابع مشابه
Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملA Location-Based Movie Recommender System Using Collaborative Filtering
Available recommender systems mostly provide recommendations based on the users’ preferences by utilizing traditional methods such as collaborative filtering which only relies on the similarities between users and items. However, collaborative filtering might lead to provide poor recommendation because it does not rely on other useful available data such as users’ locations and hence the accura...
متن کاملAn Improved Collaborative Movie Recommendation system using Computational Intelligence
Recommendation systems have become prevalent in recent years as they dealing with the information overload problem by suggesting users the most relevant products from a massive amount of data. For media product, online collaborative movie recommendations make attempts to assist users to access their preferred movies by capturing precisely similar neighbors among users or movies from their histo...
متن کاملExplaining Recommendations of Movies in Web Video Rental Businesses
Have you ever watched a movie that somebody recommended to you, and felt you wasted your time? If yes, for sure you have wished that there was a way to get, along with the recommendation, the reasoning behind it. Providing explanations along with the recommendations is the solution. Our prototype system MoviExplain is a movie recommender system with robust explanations. MoviExplain proposes a n...
متن کاملMatrix Factorization+ for Movie Recommendation
We present a novel model for movie recommendations using additional visual features extracted from pictural data like posters and still frames, to better understand movies. In particular, several context-based methods for recommendation are shown to be special cases of our proposed framework. Unlike existing context-based approaches, our method can be used to incorporate visual features – featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCSE
دوره 7 شماره
صفحات -
تاریخ انتشار 2013